Aerospace Systems Engineering, MSASE

Aerospace Systems Engineering, MSASE


Return to {$returnto_text} Return to: Programs of Study

Program Description

The Master of Science in Aerospace Systems Engineering (M.S.A.S.E.) program is designed to provide graduate study opportunities focused on theoretical study and practical experience in aerospace systems engineering. These opportunities will effectively prepare graduates for the job markets or further doctoral study. The M.S.A.S.E. program differs from traditional aerospace engineering programs in that its breadth requires cross-disciplinary study modeled after our highly ranked Ph.D. program. This forms the strongly needed systems understanding required in modern aerospace programs as well as a natural steppingstone for a Ph.D. program.

Admission Requirements

  1. Students must first satisfy basic requirements of the Graduate School. This includes having earned a bachelor's degree in engineering or a related area with an overall undergraduate grade point average of at least 3.4 (on a 4.0 scale)

     
  2. International students need additional information in a complete admission package (including a TOEFL score minimum 89, IELTS score minimum 6.0, and financial information). International student admission  packages are sent to the International Student Admissions Office before forwarding to the department for review and recommendation and will require sufficient evidence that they would be able to obtain employment upon completion (not typically possible for U.S. Department of Defense and its contractors, a significant segment of the Dayton region's workforce).

     
  3. A GRE is required with a combined GRE score of 304 (1000 under the old system) with a quantitative score of 158 or above and an analytical writing GRE score of 3.5 out of 6.0

     
  4. Three letters of recommendation

     
  5. A personal statement of goals and experience

Program Learning Outcomes

  •  Outcome 1. Demonstrate engineering competency in aerospace system engineering field 

    Outcome 2. The ability to apply advanced engineering analysis techniques to the solution of complex problems 

    Outcome 3. The ability to articulate the results of complex engineering problems in written or oral form.  

Facilities

The Department of Mechanical and Materials Engineering is housed in Wright State's Russ Engineering Center. Many outstanding facilities are available for both teaching and research. Access to modern equipment, instrumentation, and computer systems similar to those used by industry is a critical part of an engineering education. Laboratories specifically dedicated to student and faculty research exist in heat transfer, fluid dynamics, mechanical vibrations, micro-fabrication, materials testing, materials processing, electron microscopy, etc. Computational facilities include numerous PC clusters, workstations, X-windowing terminals, and personal computers. Students have access to a wide range of computer systems interconnected by local and wide-area networks. Access is also available to the Ohio Supercomputer via the Ohio Academic and Research Network (OARNET).

Graduate students have access to a wide range of modern facilities at Wright State including classrooms, laboratories, and computer systems interconnected by local and wide-area communication networks. Graduate research is not limited to the facilities on campus.

Several industrial companies and laboratories at Wright-Patterson Air Force Base are involved in joint research efforts with the university and have unique facilities available for faculty and graduate research.

For More Information

Program Requirements:


Dept Core and Electives


I. Core Classes: 12 Hours


1) CHOOSE 2 FROM THE FOLLOWING:


2) CHOOSE 2 FROM THE FOLLOWING:


II. Subspecialty: 6 Hours


A two-course sub-specialty sequence, at least one of which must be at the 7xxx level:

  • Industrial and Human Systems
  • Sensors and Signals
  • Materials and Nanotechnology
  • Controls and Robotics
  • Computer Science
  • Medical/Biological Systems

Ill. Math Course: 3 Hours


IV. Thesis or Non-Thesis Options: 9-0 Hours


  • Thesis option

    Master’s thesis (ME 7950)

     
  • Non-thesis option

    3 additional 3 credit hour courses at 7000 level

V. Electives: 0-9 Hours


  • As necessary for credit hour total

Note(s):


At least 15 credit hours of coursework must be taken at the 7xxx level for the non-thesis option.  At least 6 credit hours of coursework must be taken at the 7xxx level for the thesis option. Core and subspecialty courses taken as an undergraduate may be applied to fulfill content requirements. If so, advisor approved courses must be taken to meet the 30-hour requirement.

This is less than a 49% difference from the existing Mechanical Engineering: Thermal Fluids track MS in Engineering. Consider the following scenarios:

Thesis Option (30 hours):

Following a thesis option, 9 hours of each are dedicated to thesis, 3 hours to MTH 6050 , and the Mechanical Engineering Thermal fluid track contains room for 9 hours of electives, which would be filled by the 2 core classes in category a). This is a total of 18 of 30 hours common. Further, ME 7340 is a core course for each.

Non-thesis option (30 hours).

The 9 hours of replacement courses for the thesis can be equivalent between the programs (ME Thermal Fluids and Aero). The Mech EGR Thermal fluid track contains room for 9 hours of electives, which would be filled by the 2 core classes in category a). This is a total of 18 of 30 hours common. Further, ME 7340 is a core course for each.

Research/Areas of Expertise:


Research in the Department of Mechanical and Materials Engineering spans several exciting areas. There is a large program in design optimization addressing large structures, die shapes, flight trajectories, and other applications. Work is also being done in structural dynamics areas including vehicle  suspensions and turbine blades. Mechanical design studies include the characterization of carbon-carbon composites. Fluid dynamics research is being conducted both experimentally and via computer computation (CFD). Projects include study of flows in turbine engines and reciprocating compressors. There is also a large thermal science program in the analysis and application of heat pipes and related devices.

Return to {$returnto_text} Return to: Programs of Study